

May. 29, 2024 (T. Kawate)

Date: May. 28, 2024 Time: 10:25 - 16:45Shot#: 192009 - 192122 (114 shots) Prior wall conditioning: Yes (H<sub>2</sub>) Divertor pump: Yes Gas puff: H<sub>2</sub>, Ar, CH<sub>4</sub>

NBI#(1, 2, 3, 4, 5)=gas(H, H, H, H, H)=P(4.4, 3.6, 3.9, 2.9, 4.2)MW ECH(77GHz)=ant(5.5-U, 2-OUR)=P(0.70, 0.38)MW ECH(154GHz)=ant(2-OLL, 2-OUL, 2-OLR)=P(0.71, 0.81, 0.98)MW ICH(3.5U, 3.5L, 4.5U, 4.5L)=P(-, -, -, -)MW

#### Topics

- 1. Measurement of fluctuation of electron velocity distribution function from high harmonics electron cyclotron emission (E. Kawamori (National Cheng Kung Univ.), H. Igami)
- 2. Direct observation of bulk phase space dynamics during the energetic particle driven Geodesic Acoustic Mode (Y. Kawachi (Nagoya Univ.), T. Kobayashi)
- 3. Manipulation of radial electric field using perpendicular neutral beam injection for improved confinement (Z. Lin (UCI), M. Osakabe)

# Measurement of electron entropy (velocity distribution function) from high harmonic ECE

Kawamori E. (National Cheng Kung Univ. Taiwan), Igami H., Tokuzawa T. (NIFS)

Shot #: 192009-192064

**Magnetic configuration:** ( $R_{ax}$ , Polarity,  $B_t$ ,  $\gamma$ ,  $B_q$ ) = (3.60, CW, 1.0, 1.2538, 100),

#### **Background and motivation:**

- Entropy $\left(-\int \tilde{f}_e \ln(\tilde{f}_e) dv\right)$  transport is a key for understanding turbulent heat transport
- Validation of our idea of  $\tilde{f}_e(v)$  measurement from harmonics of ECE

## Method:

- Observe ECE from optically thin plasmas, whose  $f_{e}(v)$  is externally perturbed by NB/ECH modulation
- Crosscheck of  $\tilde{f}_e(v)$  measurement by ECE with Thomson scattering measurement **Result:**
- Fluctuation of high harmonic ECE induced by ECH modulation was confirmed
- Further investigation including comparison with Thomson scattering measurement will be conducted



**Direct observation of bulk phase space dynamics during the energetic particle driven Geodesic Acoustic Mode** Y. Kawachi et al

> Freq. [kHz] 001

Shot #: 192069-192102 (total 36 shots)

**Experimental conditions:** (R<sub>ax</sub>, Polarity, B<sub>t</sub>, γ, B<sub>q</sub>) = (3.75 m, CW, 1.375 T, 1.2538, 100 %)

**Objective:** Investigation how the EGAM affects the ion temperature by using Fast CXS

#### What we did:

- We investigated low density and the EGAM excitation condition even when the NB#5 was injection
- we measured the velocity distribution dynamics by using 12 channels of Fast CXS with 10kHz sampling

#### **Results:**

- We successfully found the EGAM excitation condition with NB#5 50ms on/off modulation operation
- EGAM like chirping signal and bursty mode exhibiting second harmonics of GAM frequency with n=0 characteristics

### Future work:

 We will analyze Fast CXS data to investigate velocity distribution dynamics, and HIBP data to examine internal structure of the observed modes



# Motivation: Manipulation of radial electric field through neutral beam injection

Two sets of scans

- 1. Scan 3 injection energies of NB5 by 3 different parallel beam arrangements (copassing, counterpassing, mixed) for a total of 9 shots.
- 2. Scan the fraction of beam power going from perpendicular to parallel. All shots in this scan will have a total injection power of 6 MW.

All shots will have ECH on for half of the shot to measure the effects in both electron root and ion root

Future work: Perform simulations to compare Er growth with experiment, and compare Er between all shots



3.6 m, 2.75 T, clockwise magnetic field from above, HIBP potential measurements,~half of the shots were quiescent



| NB5                 | NB1:H<br>NB3:H | NB1: H<br>NB2: H | NB2:F |
|---------------------|----------------|------------------|-------|
| 4 sources<br>25 keV |                |                  |       |
| 3 sources<br>30 keV |                |                  |       |
| 2 sources<br>40 keV |                |                  |       |

#### Power scan

|                 | 6 MW Perp<br>0 MW Parallel<br>NBI 5: F<br>NBI 4: F | 4.5 MW Perp<br>1.5 MW Parallel<br>NBI 5: F<br>NBI 4: H | 3 MW Perp<br>3 MW Parallel<br>NBI 5: F<br>NBI 4: 0 | 1.5 MW Perp<br>4.5 MW Parallel<br>NBI 5: H<br>NBI 4: 0 | 0 MW Perp<br>6 MW Parallel<br>NBI 5: 0<br>NBI 4: 0 |
|-----------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| Mixed           | 0 Parallel                                         |                                                        | NB1: H<br>NB2: H                                   |                                                        | NB1: F<br>NB2: F                                   |
| Counter passing |                                                    | NB1: H<br>NB3: 0                                       | NB1: H<br>NB3: H                                   | NB1: H<br>NB3: F                                       |                                                    |
| Copassing       |                                                    |                                                        | NB2: F                                             |                                                        |                                                    |

Note that NBI 4 is always used for diagnostic purposes