(SG2, TC) Session Report

April 26, 2024 (M.Yoshinuma)

Date: April 25, 2024 Time: 10:35 - 14:15Shot#: 190243 - 190309 (67 shots) Prior wall conditioning: No Divertor pump: On Gas puff: H₂, Ar Pellet: No

NBI#(1, 2, 3, 4, 5) = gas(H, H, H, H, H)=P(4.2, 4.3, 4.4, 3.8, 4.1) MW **ECH**(77GHz) = ant(1.5-Uo, 5.5-U, 2-OUR)=P(0.698, 0.38, 0.705) MW **ECH**(154GHz) = ant(2-OLL, 2-OUL, 2-OLR)=P(0.889, 0.982, -) MW **ICH**(3.5U, 3.5L, 4.5U, 4.5L) = P(-, -, -, -) MW

Topics

- 1. Investigation of electron-scale turbulence and its influence to transport(T. Nasu)
- 2. Verification of the effect of magnetic field geometry on zonal flow in 3D confined configuration (S. Satake)

Investigation of electron-scale turbulence and its influence to transport

Shot#: 190243 - 190287

Proponent: Tatsuhiro Nasu, Tokihiko Tokuzawa, Motoki Nakata

<u>Background</u>: We have investigated electron-scale turbulence characteristics because its influence to transport is not ignorable in high T_e plasma. Especially, we observed their intensity dependence on R_{ax}/L_{Te} in D plasma with constant T_e/T_i in 24th LHD experimental campaign. To investigate the difference in the characteristics by isotope effect, we tried to observe intensity dependence on R_{ax}/L_{Te} in H plasma.

Experimental conditions:

• $(R_{ax}, B_t, polarity, gamma, B_q) = (3.6, 2.75, CW, 1.2538, 100), gas: H$ <u>**Results:**</u>

- On-/off-axis ECHs were used to control Te profile with control of power and deposition location.
- We could attain hollow Te profiles.
- More detailed analysis of the relationship between turbulence and transport will be available in the near future.

2024/4/25 "Verification of the effect of magnetic field geometry on zonal flow in 3D confined configuration"

S. Satake (NIFS)

Objective of the experiment

Investigate the relationship between the geodesic curvature of the magnetic field and the suppression of turbulent by zonal flow

Operation

- Plasma : Rax=3.70, Bax=2.676, γ = 1.2538, Bq=100%, CW
- Diagnostics : HIBP (core-Er), CXRS(edge-Er), PCI, BS, DBS(ion&electron-scale fluctuation)
- ECH and NBI power changed gradually during a shot
- Density scan by gas puff. (ne~0.8, 1.2, 1.6, 2.0e19)
- Te was very high (~6keV) in the ECH-only phase and then stepped down as tangential NBI was added.
- Ti was 2~2.5keV during ECH was on. At t>5.0 when ECH turned off, both Te and Ti dropped suddenly.
- Saw-tooth like behavior was observed in Te prof. when strong heating was applied.
- Positive-Er @ r>0.5a. Probably electron-root.
- As density increased by gas puff, Te and Ti dropped (Te~3kev, Ti~1keV) and Te perturbation was not observed.
- HIBP and fluctuation measurements will be checked to see the change in the Er and turbulent.
- Different configurations (Bq scan) will be done in next year.

