(MAP) Session Report

Date: Apr. 23, 2024 Time: 10:28 - 16:43Shot#: 190009 - 190121 (113 shots) Prior wall conditioning: H₂ GDC (4/20, 4/21) Divertor pump: Off Gas puff: H₂, Ar Pellet: B, W LID: On

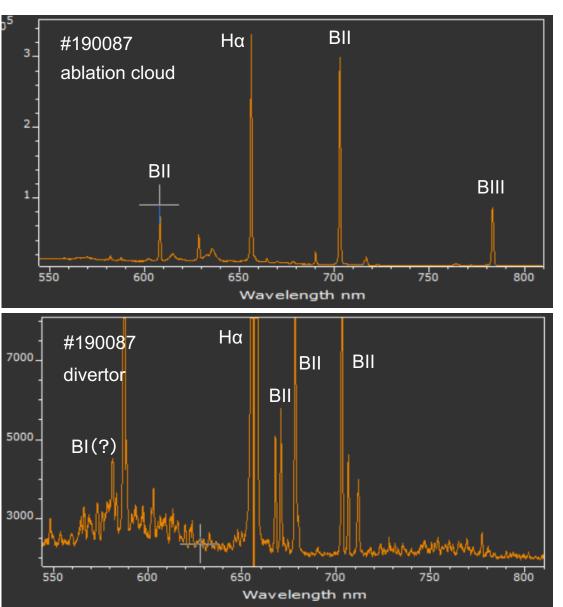
NBI#(1, 2, 3, 4, 5) = gas(H, H, H, H, H)=P(4.7, 4.1, 4.2, 3.1, 3.2) MW ECH(77GHz) = ant(1.5-Uo, 5.5-U, 2-OUR)=P(-, 0.698 0.38) MW ECH(154GHz) = ant(2-OLL, 2-OUL, 2-OLR)=P(0.705, 0.889, 0.982) MW ICH(3.5U, 3.5L, 4.5U, 4.5L) = P(-, -, -, -) MW

Topics

- 1. Database construction of boron ion emission lines (M. Goto)
- 2. Effect of boron impurity powder injection on tungsten impurity transport in the LHD core plasma (T. Oishi (Tohoku Univ.))
- 3. Spectroscopic analysis of divertor detachment (M. Goto)
- 4. The sustainment of divertor detachment by injection of impurity dust particles into the magnetic island in the LHD peripheral plasma using the IPD (M. Shoji)

Database construction of boron ion emission lines

Experimental conditions:

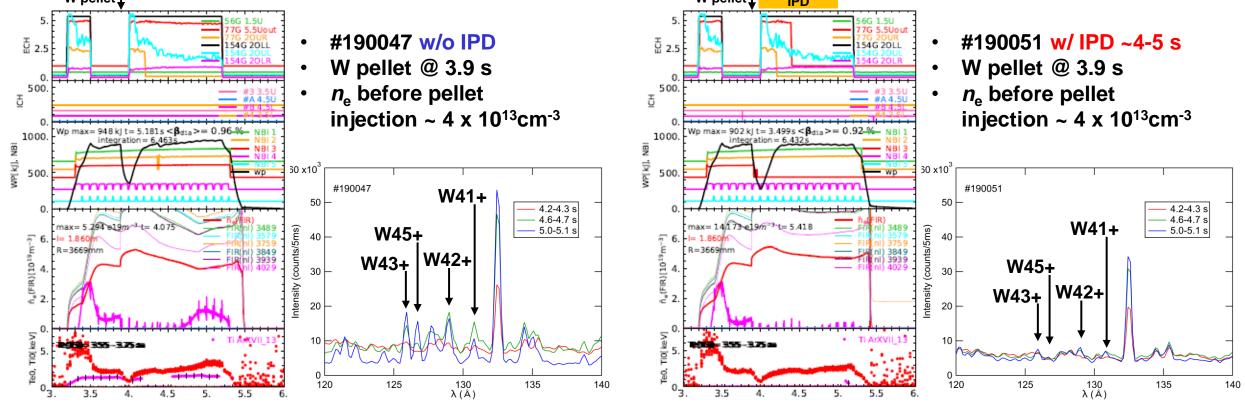

 $(R_{ax}, Polarity, B_t, \gamma, B_q) = (3.6 \text{ m}, CW, 2.75 \text{ T}, 1.2538, 100.0\%),$ (3.9 m, CW, 2.5385 T, 1.2538, 100.0%) #190029 - #190030, #190070-190089

Motivation and method:

- ITER-DIM (Divertor Impurity Monitor) considers to use Boron emission lines for plasma parameter measurement.
- Boron IPD and pellets are used to accumulate data for emission lines of boron ions.
- The composition of the pellets used in this experiment are examined.

Results:

- It was confirmed that spectrum for the pellet ablation cloud mainly consist of boron ion emission lines.
- Localized line emissions of boron ions in the divertor were observed with the boron IPD discharge.


M. Goto, K. Nojiri (QST) and T. Kawate

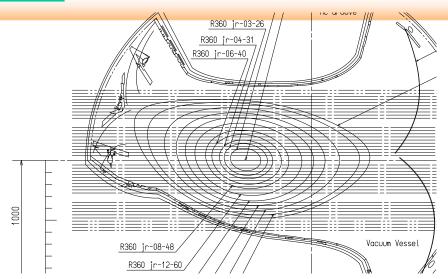
Conditions: $R_{ax} = 3.6 \text{ m}, B_t = 2.75 \text{ T}, \text{CW}, \gamma = 1.2538, B_q = 100.0 \% \#190034-190069 \text{ (total 36 shots)}$

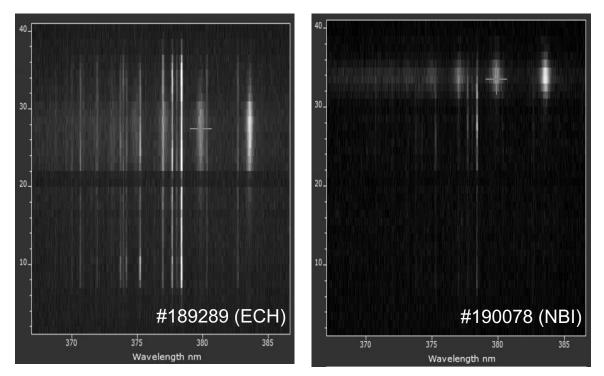
Objective: A significant reduction of iron impurities has been observed when boron powders are injected by the impurity powder dropper (IPD). -> Boron IPD has a potential to be an effective impurity control method. We aim to investigate the effects of boron IPD on tungsten impurity transport in the core plasma of LHD.

Results:

- For the discharges [w/ IPD, w/o IPD] x [n_e = 1, 2, 3, 4 x 10¹³ cm⁻³], spectroscopic date were obtained in the EUV, VUV, and visible wavelength range.
- Although the discharge w/ IPD appears to have smaller line spectra of W⁴¹⁺-W⁴⁵⁺ charge states, it is necessary to consider the effect of IPD including the comparison of different electron temperatures and low to medium charge states of W ions.
 W pellet J

Spectroscopic analysis of divertor detachment


 $(R_{ax}, Polarity, B_t, \gamma, B_q) = (3.9 \text{ m}, CW, 2.538 \text{ T}, 1.2538, 100\%)$ LID: 3000 A (6-O) #190070-#190089


Motivation and method:

- The Balmer series spectrum shows typical recombining plasma characteristics when plasma is detached due to strong hydrogen gas puff.
- Spectrum for NBI plasma is compared with that for ECH plasma on April 10.

Results:

- Spectra also suggest a formation of the recombining plasma for NBI plasmas.
- The recombining plasma formation takes place at different regions for ECH and NBI plasmas.

The sustainment of divertor detachment by injection of impurity dust particles into the magnetic island in the LHD peripheral plasma using the IPD

Experimental conditions:

 $(R_{ax}, Polarity, B_t, \gamma, B_q) = (3.90 \text{ m}, CW, 1.375 \text{ T}, 1.2538, 100\%)$, Shots: #190091 - #190121 $I_{LID}=(6O, -1950 \text{ A})$, Shots: #190093 - #190110, $I_{LID}=(6O, -3300 \text{ A})$, Shots: #190113 - #190121 ECH: only for start-up, NBI: #1-5, IPD: Silicon (4-5 sec.)

Objective:

Triggering and sustaining divertor detachment were tried by enhancing the radiation power induced by the injection of dust particles (silicon and boron) into a magnetic island in the LHD peripheral plasma, which is for assisting the divertor detachment using the IPD.

Experiment:

Silicon powders (higher Z) were dropped into the peripheral plasma (magnetic island) by the impurity powder dropper (IPD) in high density plasma discharges ($n_e \sim 6 \times 10^{19} \text{ m}^{-3}$) for a low magnetic field (B=1.375 T). The powder drop rate was optimized step by step. Powder injection into plasma discharges with an expanded magnetic island ($I_{\text{LID}}=-3300 \text{ A}$) were also tried.

Results:

The detached state was achieved at the startup phase of the plasma discharge (~ 3.5 s). The silicon powder injection contributed to the slight enhancement of the radiation power, which was quite smaller than what was originally expected.

#190115 #190119 Without IPD (Si) With IPD (Si) With I_{LID} (-3300A) With I_{LID} (-3300A) ne ne ¹⁰¹⁹m⁻¹ max= 3.893 MW = 4.623s E Prad^o **P**rad Prad[MW] N IPD (Si) ov, Cili,FeXVI limp ^Iimp 4'Ⅲ2 .' ∧ 0.₃ 3.5 5.5 3.5 4.5 5.5 4.5 5 6. 4. Time (s) Time (s)

Ablation image of Si powders

(M. Shoji)