(SG2, TC) Session Report

April 5, 2024 (M.Yoshinuma)

Date: April 4, 2024 Time: 14:45 - 16:45Shot#: 188947 - 188988 (42 shots) Prior wall conditioning: None Divertor pump: Off Gas puff: H₂ Pellet: None

NBI#(1, 2, 3, 4, 5) = gas(H, H, H, H, H)=P(3.7, 3.8, 3.9, 3.0, -) MW **ECH**(77GHz) = ant(5.5-U, 2-OUR, 1.5Uo)=P(698, 380, -) MW **ECH**(154GHz) = ant(2-OLL, 2-OUL, 2-OLR)=P(-, -, -) MW **ICH**(3.5U, 3.5L, 4.5U, 4.5L) = P(-, -, -, -) MW

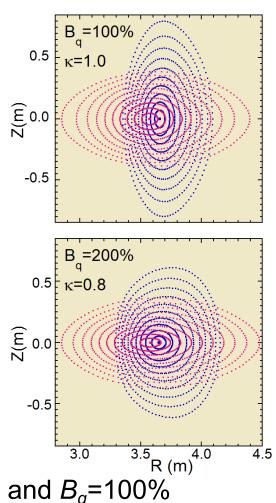
Topics

1. Assessment of geometrical effect on transport through quadrupole field scan(H. Yamada)

Assessment of geometrical effect on transport through quadrupole field scan

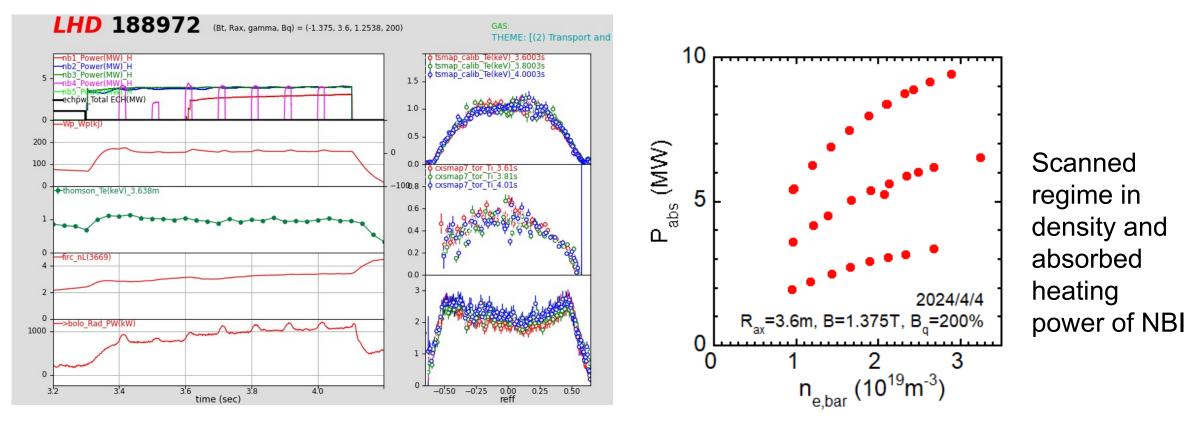
H.Yamada, N. Tamura K.Tanaka, T.Tokuzawa, M.Yoshinuma, K.ida et al.

Experimental conditions: Shot #:


(*R*_{ax}, Polarity, *B*, *γ*, *B*_q) = (3.6 m, CCW, 1.375 T, 1.2538, <u>200%</u>) 188947 - 188988

Background and motivation:

- This study revisits the assessment of geometrical effect due to elongation on transport with much more enriched/matured diagnostics and tools than the previous study in 2003-2004.
- Elongation k can be controlled from 0.8 to 1.4 by changing $B_q=200\%-0\%$
- Elongation scan by means of quadrupole field would be a clever way to extract the effect of geodesic curvature, trapped particle fraction, etc. compared with the magnetic axis scan which changes a variety of physical properties.


Subject on this day:

- Compilation of data in the case of B_q =200% (oblate configuration)
- Data are to be compared with the case with $B_q=0\%$ (prolate configuration) and $B_q=100\%$ (standard but the minor radius is adjusted to the same by $\gamma = 1.174$) planned on May 1.

Assessment of geometrical effect on transport through quadrupole field scan

• For the oblate configuration (B_q =200%), density and absorbed power of NBI were scanned in the ranges of 0.9-3.2×10¹⁹m⁻³ and 1.9 – 9.4 MW.

- Documentation of confinement/transport characteristics together with density fluctuation (PCI, μ-wave scattering, reflectometer) will be done.
- Dataset will be combined with the cases with $B_q=0\%$ and $100\%(\gamma=1.174)$