(TG4) Plasma instability group report Dec. 21, 2022 (N. Kenmochi) Date: Dec.20, 2022 Time: 11:55 -14:45 Shot#: 186548-186598 (51shots) Prior wall conditioning: No Divertor pump: On Gas puff: H2, Ne, Ar Pellet: No NBI#(1, 2, 3, 4, 5)=gas(H, H, H, H, H)=P(0, 2.0, 2.1, 3.7, 4.0)MW ECH(77GHz)=ant(5.5-Uout (or 1.5U), 2-OUR)=P(0.70, 0)MW ECH(154GHz)=ant(2-OLL, 2-OUL, 2-OLR)=P(0, 0, 0)MW ECH(56GHz)=ant(1.5U)=P(0.0)MW ICH(3.5U, 3.5L, 4.5U, 4.5L)=P(0, 0, 0, 0)MW Neutron yield integrated over experiment = 1.9×10^{13} ### Topic - Optimization of non-collisional energy transfer from energetic ions to bulk ions in reversed magnetic shear plasmas (K. Toi, K. Ogawa) - 2. Studies of global stability and transport characteristics of a helical plasma with zero rotational-transform layer produced by non-inductive counter current drive (K. Toi, S. Ohdachi) ## Optimization of non-collisional energy transfer from energetic ions to bulk ions in reversed magnetic shear plasmas K. Toi, K. Ogawa #### **Background and objective** - Noticeable T_{io}-increase observed in counter NBCD plasmas is interpreted consistently by ion Landau damping of energetic ion driven geodesic acoustic mode (EGAM). The T_{io} -increase is suddenly terminated by sudden drop of EGAM damping rate. - Main objective is to avoid the sudden termination by applying ECCD and to achieve long sustainment of $T_{io} \gtrsim T_{eo}$ condition. #### **Experimental condition** - #186549 ~ #186571 (23 shots) - $-(R_{ax}, B_t, \gamma, B_q) = (3.75 \text{ m}, 1.3 \& 1.5\text{T}, 1.254, 100\%)$ - NBI #3 ($P_{\rm NBI, \, port} \sim 2.1$ MW), modulated ECH (averaged ~ 0.35 MW) for some shots. - $n_{\rm e, \, bar} \sim 0.2$ -1.0x 10¹⁹ m⁻³ - Divertor pumping: ON - Gas: Ne (for high NB-driven current), Ar (for Crystal spectroscopy) #### Results - $T_{io} \gtrsim T_{eo}$ plasma condition obtained in the 23th campaign was not reproduced due to too low plasma current driven by #3 NBI alone. In this campaign, obtained highest plasma current is ~ 82 kA, where obviously T_{io} is lower than T_{eo} as seen from Fig.1. Even in this low Ip shot, a reversed magnetic shear plasma is produced and a signature of Tio-increase quench is found as a jump of EGAM amplitude. - Modulated ECH was tested in low current plasmas instead of ECCD (ECCD was not available this day). # Studies of global stability and transport characteristics of a helical plasma with zero rotational-transform layer produced by non-inductive counter current drive K. Toi, S. Ohdachi #### **Background and objective** - To produce very low rotational transform in plasma core region by counter NBCD up to -150 kA to simulate *tokamak current hole*-like plasma - Objective is to clarify responses of plasma profiles (Te, ne, Ti) and plasma flows to very low t in the plasma core region, and to investigate formation of n=0 magnetic island, current clamping and so on. #### **Experimental condition** - #186572 ~ #186598 (27 shots) - $-(R_{ax}, B_t, \gamma, B_a) = (3.60 \text{ m}, 1.5 \& 1.3\text{T}, 1.254, 100\%)$ - NBI #3 ($P_{\rm NBI,\,port}$ ~ 2.1 MW), NBI #4 & #5 were injected for some shots. - $n_{\rm e, \, bar} \sim 0.2 1.0 \times 10^{19} \, {\rm m}^{-3}$ - Divertor pumping: ON - Gas: Ne (for high NB-driven current), Ar (for Crystal spectroscopy) #### Results - Target plasmas having high toroidal current (~130-150 kA) achieved in the past campaign was not obtained due to low tangential beam power (only #3 NBI). On this condition, obtained highest plasma current is \sim 87 kA (Fig.1), despite of careful tuning of plasma condition. We will study temporal evolution of the central rotational transform with help of characteristic Alfven eigenmode activities observed in the past campaign. - $T_{\rm e}$ profile at Ip~-87 kA (at t=8.0669 s) is parabolic as shown in Fig.2 and seems to have no signature inferred for very low rotational transform near the plasma center. Fig.2