Date: Feb. 10, 2022
Time: 11:18 -12:12
Shot#: 178764 – 178782 (19 shots)

Prior wall conditioning: No
Divertor pump: On
Gas puff: H2, He, Ne, N, Ar IPD: No
LID: Off

NBI#(1, 2, 3, 4, 5)=gas(H, -, H, H, He)=P(2.0, 1.2, 1.8, 3.9, 3.8) MW
ECH(77GHz)=ant(5.5-U, 2-OUR)=P(703, 792)kW
ECH(154GHz)=ant(2-OLL, 2-OUL, 2O-LR)=P(723, 799, 825) kW
ECH(116GHz)=ant(2O-LR)=P(-)kW
ECH(56GHz)=ant(1.5-U)=P(-)kW
ICH(3.5U, 3.5L, 4.5U, 4.5L) = P(-, -, -, -) MW
Neutron yield integrated over the experiment = 7.8x10^{10}

Topics
1. B_{4}C granule injection into NBI heated plasmas (R. Lunsford, S. Masuzaki)
Continuation of IPD 250 μm B₄C experiment. Same material as injected into W7-X, showing elevated temps, stored energy, confinement time. Larger granules expected to penetrate deeper into LHD plasmas than earlier powders.

Applicable impurity burden sensitive to heating type:
- IPDB₄C max with ECH = 2.5 V
- IPDB₄C max with ECH = 6 V

Injection level now substantial enough to improve discharge performance:
- Scan of IPD injection voltages shows increasing temperature improvement with higher injection levels.
- Max injection rate for this heating level and this granule size determined.
- Reduction in turbulent fluctuations appears to accompany increased performance.
- Increase in temperature can be sustained throughout injection period.
- Injected material modifies density profile, steepened at the edges, hollow in the middle. Possible mechanism for suppression of ITG type turbulence.