(TG1) Multi-ion group report

Feb. 3, 2022 (G. Motojima)

Date: Feb. 2, 2022 Time: 9:50-13:25, 17:00-18:45 Shot#: 177904-177920 (17 shots), 177952–178024 (73 shots) Prior wall conditioning: No Divertor pump: No Gas puff: H₂, N2, Kr, Ne, Ar Pellet: No NBI#(1, 2, 3, 4, 5) = gas(H, H, H, H, H/He) = P(4.1, 2.3, 4.3, 5.2, 4.7) MW ECH(77 GHz) = ant(5.5-Uout, 2-OUR) = P(703, 792) kW ECH(154 GHz) = ant(2-OLL, 2-OUL, 2-OLR) = P(723, 799, 825) kW ECH(56 GHz) = ant(1.5U) = P(-) kW ICH(3.5U, 3.5L, 4.5U, 4.5L) = P(0.84, 0.73, 0.80, 0.39) MW Neutron yield integrated over the experiment = 1.0×10^{12} (day total)

Topics

- 1. Toroidal a/symmetry with N2 seeding at Rax = 3.9 m (B. Peterson)
- 2. Feature extraction of radiation structure from IRVB images using PCA (K. Mukai)
- 3. Study of core He density in different pumping condition by using the He beam (G. Motojima, K. Nagaoka)
- 4. Studying the dependence of neutral particle pressures in the divertor region on cryo-vacuum pump operation (C.P. Dhard, D. Naujoks (IPP) et al.)
- 5. Impurity seeding from inner ports (S. Masuzaki)

Background and objective:

- Recently bolometers were installed at ports 6-O, 7-O and 10-O in addition to 3-O, 6.5-L and 8-O.

- N₂ seeding experiments were performed on Jan. 8,19, 2021 at R_{ax} = 3.6 m and –B, B and on October 19, 2021 at R_{ax} = 3.9 m and B to investigate the toroidal asymmetry of radiation.

- Experiments on October 19, 2021 reproduced with -B
- LID coil applied with 6-0 expansion (-2350,-1680,-3040 A) **Experimental condition:**
 - NBI #1, 2, 3 (NBI 2 is at half power)

- density is held constant during impurity puff at $n_{e, bar}$ =4 x 10¹⁹/m³ Shots 177904-177920 (17 shots total, 50 min. of machine time)

- #177904,16, 11, 15 : reference shot, no N_2 puff
- #177906, **12**, **05** : N₂ puff from port 3.5-L,
- #177908, 7, 13, 17 : N_2 puff from port 5.5-L
- #177910, 14, **18**, **09** : N₂ puff from port 9.5-L
 - red LID was applied, bold = best shot
- #177919 NBI calibration shot

Radiation increases near N2 puff port

Toroidal radiation distribution changes with 6-O island (no N2 seeding)

LHD17791 [B]-ax, gamma, Bq) = (-2.5384, 3.9, 1.2538, 100)

GAS: H2

MyView2[Ver.738] (asymetry20220202.mvd)

2022/02/02 10:23

THEME: [(4) Instability] Control to avoid radiative collapse

Radiation increases near N₂ puff port (with 6-O island)

Background and objective

- 3-D localized radiation structure in N₂ seeded plasmas could be extracted from IRVB images using principal component analysis (PCA).
 [K. Mukai *et al.*, ITC30]
- Since the previous study was conducted in R_{ax} = 3.6 m, the same analysis was performed in R_{ax} = 3.9 m.

Analysis condition

- 6.5-U IRVB
- #177916 (w/o N₂), #177912 (3.5-L), #177908 (5.5-L), #177918 (9.5-L)
- 400 frames
- (= 100 frames/shot (3.8 4.8 s) x 4 shots)

<u>Results</u>

- Radiation images were comparable regardless of the port.
- Using PCA, localized radiation structure could be extracted in R_{ax} = 3.9 m.
- 3rd PC score increased only in the $N_{\rm 2}$ seeding from 5.5-L port.
- The structure of 3rd PC (shown in red) is along the upper edge structure.
- In the case of seeding from 3.5-L and 9.5-L, radiation should be localized out of the FOV of 6.5-U IRVB.

Radiation images (left: 5.5-L, right: 9.5-L)

FOV of 6.5-U IRVB

FIG(6I W)(Pa)

0.025

8/10

3.0

Fig_H2_FIG(6I_W)(Pa)@178003

3.5

4.0

4.5

Time [s]

5.0

 Experimental data for the time when the NBI was in the deuterium (D) phase (2021/11/26, 2021/12/3) has been already obtained.

2022/02/02 15:41

2.5 0

2.5 H

0.0 Gaspu

Divertor pressure 6I (Pa)

6.0

5.5

Wendelstein

IPP

- \checkmark In the present study, we have obtained the data when the NBI was in the hydrogen phase (H).
- \checkmark In high-density plasmas (5e19 m⁻³), detached plasmas were successfully produced at higher feedback voltages (6V, 20Hz) than in the D phase (2.5V, 5Hz), although careful comparisons need to be made for the heating power of NBI/ECH/ICH.
- \checkmark The data without divertor pumping was obtained on this day, and the data with divertor pumping will be obtained on February 3.

Impurity seeding from inner ports S. Masuzaki

Shot #: 177977-177993, 178013-178024, (R_{ax} , B_{t} , γ , B_{q}) = (3.6 m, -2.75 T, 1.2538, 100.0%) Working gas: H2, Seeding gas: Ne, Kr $P_{NBI1.3} \sim 4MW$, $P_{NBI2} \sim 2$ MW, $P_{ECH} \sim 3.5$ MW, $P_{ICH} \sim 2$ MW

- ✓ Ne and Kr seedings were carried out using new valves at 3I and 6I.
- In the case of Ne seeding from the 6l valve, neutral pressure in 6l increased and slowly decreased for the low conductance. Even the increase of neutral pressure, the time evolution of ion saturation current at 6l was almost the same as that at other sections.
- ✓ With similar Ne puffing conditions (5V-40ms for 6I and 5V-50ms for 3I), plasma collapsed with the 6I puffing but plasma sustained with the 3I puffing.

Bottom: neutral pressure in 6I

New gas valves for impurities gases puffing were installed before the 23rd campaign at 3-I and 6-I ports

3I Open divertor

6I Closed divertor

Shorter distance between plasma and value for I port values than L port values. \rightarrow Better controllability?

Comparison of puffing from open and closed divertor

 \rightarrow Local effect on divertor plasma properties?

Toroidal asymmetry of divertor plasma response?