(TG4) Plasma instability group report

Date: Nov. 12, 2021
Time: 9:50 - 18:45
Shot#: 172473 – 172622 (150 shots)
Prior wall conditioning: No
Divertor pump: On except for 2-I
Gas puff: D2, Pellet: No
NBI#(1, 2, 3, 4, 5)=gas(H, D, D, D, D)=P(5.5, 2.9, 2.1, 4.4, 5.2)MW
ECH(77GHz)=ant(5.5-Uout (or 1.5U), 2-OUR)=P(700, 790)kW
ECH(154GHz)=ant(2-OLL, 2-OUL , 2-OLR)=P(980, 730, 990)kW
ECH(56GHz)=ant(1.5U)=P(0)kW
ICH(3.5U, 3.5L, 4.5U, 4.5L)=P(0.58, 0.58, 0.87, 0.50)MW
Neutron yield integrated over experiment = \(2.4 \times 10^{16}\)

Topics
1. Observation of knock-on tail (H. Matsuura)
2. Hydrogen and deuterium beam ion transport due to toroidal Alfvén eigenmode (S. Kamio)
3. Estimation of the Coulomb collision between fast-ions (non-linear collision) (H. Nuga)
Observation of knock-on tail

Experimental conditions: $R_{ax} = 3.6$ m, CCW, $B_t = 2.75$ T

1. γ-ray (by 6Li-d reaction) measurement in D-beam (NBI#2,3,4,5) injected plasma
 - 6LiF pellet was injected into deuterium plasma with D (#NBI 2,3,4,5) and H (#1) beam heating.
 - γ-rays which may be emitted from 6Li(d,$n\gamma$)7Be/ 6Li(d,$p\gamma$)7Li reactions were measured first time.

2. Knock-on tail observation in ICH plasmas
 - The neutron generation rate increased after ICRF waves were injected.
 - Experiment was performed in high-electron-temperature plasmas, i.e., $T_e(0) = 6\sim10$ keV.
 - Ion temperature (measured by CXS) could be kept beyond 2 keV.
 - Some kind of influence of fast deuterons could be suggested.
Hydrogen and deuterium beam ion transport due to toroidal Alfvén eigenmode

Experimental conditions:

\((R_{ax}, \text{Polarity}, B_t, \gamma, B_q) = (3.6 \, \text{m}, \text{CCW}, 0.50 \, \text{T}, 1.254, 100\%), \)

\((3.6 \, \text{m}, \text{CCW}, 0.60 \, \text{T}, 1.254, 100\%) \)

Background and motive

• Clarifying the behavior of TAE in the presence of multiple energetic particle species by simultaneous injection of H and D beams using NB#1 and #3.

• To investigate the possibility of using ICRF to start-up plasmas in experiments at 0.5 T, where ECH is not available, ICRF is injected into the vacuum.

Results

• Successful plasma start-up using ICRF.

• We successfully accumulated the experimental data on mixed beams including density scans in multiple magnetic field configurations.

• Unfortunately, E||B-NPA could not be an active measurement by using NB#3 modulation injection.
Estimation of the Coulomb collision between fast-ions (non-linear collision)

Shot #: 172581-172622 (42 discharges) H. Nuga

Experimental conditions:
\((R_{ax}, \text{Polarity}, B_t, \gamma, B_q) = (3.6 \text{ m, CCW, 2.75 T, 1.2538, 100 \%})\)

Background and motivation:
- Coulomb collision between fast-ions (Non-Linear Coulomb collision) can be measured through the decay time of the neutron emission rate.
- NL collision will occur between 1 MeV D beam and 3.5 MeV alpha particle in ITER and may affect instabilities.
- Aim of this exp. is the experimental demonstration of NL collision between fast-ions.

Summary:
- Unfortunately, the success rate of NB injection is poor due to the difficulty of short pulse injection. (7/42)
- Weak extension of the neutron decay time is observed in the low-density plasma.
 - NB#1 fast-ions collide with NB#3 fast-ions.
 - Power of NB#1 is low as compared to that of 19th cycle.
 - NL coll. effect is weak.
- Systematic analysis of this series of experiments is required for detailed discussion.