# Silicon on Insulator Pixel Detector for X-ray Imaging

S. Muto<sup>1</sup>, T. Miyoshi<sup>2, 4</sup>, N. Tamura<sup>1</sup>, H. Nakanishi<sup>1, 4</sup>, Y. Itoh<sup>1</sup>, K. Tsukada<sup>3</sup>, R. Nishimura<sup>4</sup>, T. Tsuru<sup>5</sup>, Y. Ono<sup>6</sup>, Y. Arai<sup>2, 4</sup>,

<sup>1</sup>National Institute for Fusion Science, 322-6, Oroshi, Toki, Gifu, JAPAN

<sup>3</sup>Department of Technical Support, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi, JAPAN

<sup>4</sup>The Graduated University for Advanced Studies, Hayama, Kanagawa, 240-0193, JAPAN

<sup>5</sup>Physics, Kyoto Univ., Kitashirakawa-Oiwake-Cho, Sakyo, Kyoto, JAPAN

<sup>6</sup>Graduate School of Frontier Sciences, Division of Transdisciplinary Sciences, The University of Tokyo, Hongo, Bunkyo, JAPAN

e-mail: mutos@nifs.ac.jp

# 1. Objective

X-ray Imaging by means of One Photon Detection to Study Impurity Transport.

## 2. Appratus

# 2.1. Silicon on Insulator Pixel Detector (SOIPIX)

- is a kind of LSI chip. [2]
- is being developed by using CAD system for circuit, layout diaphragms, and simulation.
- is processed on a semiconductor wafer of silicon on insulator.
- is both thick high-resistive radiation sensor and CMOS readout circuit. [See Fig. 1]
- consists of  $264 \times 264$  pixels in size of 14  $\mu$ m square.
- measures an x-ray photon of 20 keV with a quantum efficiency of 40 %.
- measures the x-ray photon in a range more than 3 keV.
- reads out signal in a fast time of 1 μs/pixel.



Fig. 1. Schematic view of SOIPIX [3].

<sup>&</sup>lt;sup>2</sup>Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, JAPAN

## 2.2. Optics

- is a typical pinhole camera.
- consists of a position adjustable 100-µm-diameter pinhole and a vacuum-tight-250-µm-thick beryllium filter.

## 3. Performance

#### 3.1. Data Acquisition and Control Signals

- are transferred through ethernet I/F consisting of an on-board FPGA.

## 3.2. Energy Resolution

- is estimated from the experimental results in LHD.
- is approximately 70 % in compared with a pulse height analyzer (PHA) operated in a counting rate of 64 kcps.

#### 3.3. Counting Rate

- is estimated from the experimental results in LHD.
- is approximately 70 % in compared with the PHA.

#### 3.4. Improvement of Performance

- is in progress to obtain second times larger counting rate.

### 4. Available data by "Retrieve"

#### 4.1. LABCOM

- is compatible.

# 5. Remarks

The SOIPIX and the on-board FPGA are vacuum compatible.

The SOIPIX is cooled to less than -50 °C by a refrigerator.

The assembly of the SOIPIX will be installed at a port in LHD.

Detailed manual will be also submitted.

The performance has been carried out at 7-O port.

The distance has been approximately 16 m far from the LHD plasma.

## References

- [1] "Impurity Transport Study of Medium-Z Argon by means of Soft X-ray Pulse Height Analyzer in LHD", S.Muto *et al.*, Plasma and Fusion research **2**, S1069, 2007.
- [2] "Development of SOI Pixel Process Technology", Y. Arai, *et al.*, Nucl. Instr. and Meth A. Vol. 636, Issue 1, Supplement, pp. S31-S36. doi:10.1016/j.nima.2010.04.081.
- [3] "Development of Energy Resolved X-ray Video Camera", Y. Arai, et al., Annual Report 2012 (NIFS).
- [4] "Development of Energy Resolved X-ray Video Camera in the LHD", Y. Arai, et al., Annual Report 2013 (NIFS).
- [5] "Energy Resolved X-ray Video Camera system in LHD", Y. Arai, et al., Annual Report 2014 (NIFS).